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Abstract
We prove the existence of discrete breathers (time-periodic, spatially localized
solutions) in weakly coupled ferromagnetic spin chains with easy-axis
anisotropy. Using numerical methods we then investigate the continuation
of discrete breather solutions as the intersite coupling is increased. We find a
band of frequencies for which the one-site breather continues all the way to
the soliton solution in the continuum. There is a second band, which abuts the
first, in which the one-site breather does not continue to the soliton solution,
but a certain multi-site breather does. This banded structure continues, so that
in each band there is a particular multi-site breather which continues to the
soliton solution. A detailed analysis is presented, including an exposition of
how the bifurcation pattern changes as a band is crossed. The linear stability
of breathers is analysed. It is proved that one-site breathers are stable at small
coupling, provided a non-resonance condition holds, and an extensive numerical
stability analysis of one-site and multisite breathers is performed. The results
show alternating bands of stability and instability as the coupling increases.

PACS numbers: 05.45.Xt, 05.50.+q, 05.45.YV, 63.20.Pw, 75.10.-b

1. Introduction

Discrete breathers are time periodic, spatially localized solutions in networks of coupled
oscillators (including rotors and spins). They arise in a variety of very general systems [13,16]
due to the interplay between nonlinear and discrete effects, and therefore there is an enormous
potential for their application in many areas of physics, particularly condensed matter and
biophysics, where physical systems are often inherently discrete. Generally one finds that as
the system is moved closer to its continuum limit, by increasing a coupling constant in the
theory, there comes a point at which a discrete breather solution no longer exists. This is to
be expected since an increase in the coupling constant results in an expansion of the phonon
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frequency band and eventually this band captures a harmonic of the breather frequency. In
fact, it is often the case that the discrete breather cannot be continued even up to the point at
which the above resonance argument applies, and this is not well understood.

In this paper we study the classical equations of motion for a ferromagnetic spin chain
with an easy-axis anisotropy. Some numerical studies of discrete breathers (which are known
as intrinsic localized modes in the condensed matter physics literature) have been performed in
the cases of easy-plane ferromagnets [17] and easy-axis antiferromagnets [12]. However, both
the perspective and the results of the current investigation are quite different. We prove the
existence of discrete breathers in the weakly coupled case by starting from the anti-continuum
limit (zero coupling constant) and applying an implicit function theorem argument to the
trivial one-site breather. We then apply numerical methods to investigate the continuation of
this solution as the coupling constant is increased, with the novel result that it continues for all
values of the coupling. This is explained by an examination of the spin waves. Depending upon
the breather frequency, the continuation results in either the soliton solution of the continuum
model or a trivial static solution in which all spins are either aligned or anti-aligned with
the vacuum. Similar results are found to apply to multi-site breathers, which fit into an
intricate pattern, and lead us to conjecture that the continuum soliton solution (of any allowed
frequency) can always be obtained from the continuation of a particular form of multi-site
breather. Evidence in support of this conjecture is presented. The numerical results are in
some ways reminiscent of those found [5, 10] for the discrete nonlinear Schrödinger (DNLS)
system, but have not previously been seen in spin chains.

We then go on to perform a linear stability analysis of the breathers within the Krein theory
framework pioneered by Aubry [1]. We prove that nonresonant continued one-site breathers
must be stable for sufficiently weak coupling, and numerically investigate the stability of both
one-site and multisite breathers. The results suggest that those families which tend to the
continuum soliton experience regular repeating bands of instability of diminishing strength as
the coupling increases.

During the refereeing process for this paper, a very interesting paper by Flach et al [9]
on breathers in very similar systems appeared. The differences between their results and ours
are, briefly, as follows. They consider both easy-axis and easy-plane anisotropy, but in the
case where the exchange interaction is anisotropic also (our exchange interaction maintains
isotropy). Breather existence is proved by continuing from a limit in which two of the exchange
integrals vanish, but the third remains nonzero. Since the continuation is for small values of
the continuation parameters (the two small exchange integrals) their existence result applies
to strongly anisotropic exchange interaction, as opposed to ours, which applies to isotropic
exchange. More importantly, in this paper we exploit the isotropic exchange to reduce the
breather equations to a purely algebraic system, which greatly simplifies the analysis in
comparison with theirs. Consequently our existence result requires none of the nonresonance
hypotheses of Flach et al ’s. Also we are able to build spatial localization of breathers directly
into our analysis, whereas Flach et al do not consider this issue at all (although standard results
of MacKay on exponential breather localization should apply to their system just as they do
to ours—see section 3). Similarly, we exploit the exchange isotropy to simplify the linear
stability analysis, again reducing it to a purely algebraic problem, a reduction not possible
for the systems analysed in [9]. We are able, therefore, to perform a very detailed numerical
existence and stability analysis at minimal computational cost. To summarize, Flach et al
prove a result of rather more general applicability and physical relevance than ours, though
their context does not, strictly speaking, include ours. We consider a somewhat more idealized
system, but obtain correspondingly stronger results.
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2. Anisotropic ferromagnetic spin chains

The classical formulation of a spin chain involves a three-component unit vector ni , giving
the spin at each lattice site i ∈ Z. The type of spin chain is defined by its Hamiltonian, which
we take to be

H =
∑
i

{
α(1 − ni · ni+1) +

A

2
[1 − (ni · e3)

2]

}
. (2.1)

Here α � 0 is the coupling constant (exchange integral), which is positive in the case of a
ferromagnet, and A > 0 is the anisotropy constant, which is also positive since we wish to
consider an easy-axis anisotropy, with e3 = (0, 0, 1) being the easy axis. In this case the
minimum of the Hamiltonian is zero, obtained by the vacuum configuration ni = ±e3. In the
following we shall choose +e3 to be the vacuum configuration and refer to spins which take
the values +e3 and −e3 as being spin up and down respectively. Furthermore, by applying a
scaling symmetry we can, without loss of generality, set A = 1.

The equation of motion is obtained from the Hamiltonian as

ṅi = −ni × ∂H

∂ni

(2.2)

where a dot denotes differentiation with respect to time. Using (2.1) we obtain

ṅi = αni × (ni+1 + ni−1) + (ni · e3)(ni × e3). (2.3)

Discrete breather solutions have the form

ni (t) = (sin θi cosωt,− sin θi sin ωt, cos θi) (2.4)

where ω is the frequency. Substituting this ansatz into the equation of motion (2.3) yields the
following nonlinear second-order difference equation for the angles θi :

α{cos θi(sin θi+1 + sin θi−1) − sin θi(cos θi+1 + cos θi−1)} = sin θi(cos θi − ω). (2.5)

Such a periodic solution may properly be called a discrete breather if it is spatially localized,
that is, limi→±∞ θi = 0.

In section 3 we shall prove the existence of discrete breathers for α sufficiently small and
in section 4 we shall study them numerically for a range of values of α.

Note that for all α there is a set of static solutions in which each spin can independently
be chosen to point either up or down, since in each case we have that sin θi = 0 for all i,
which clearly solves equation (2.5). These solutions will play an important role later in our
discussion.

Finally, in this section, we address the continuum limit α → ∞. Write α = 1/h2 and
regard ni as the value of a continuous function n(x) sampled at the lattice points x = ih.
Taking the continuum limit h → 0, the Hamiltonian (2.1) becomes

H =
∫

{ 1
2n′ · n′ + 1

2 [1 − (ni · e3)
2]} dx (2.6)

and the equation of motion is

ṅ = n × n′′ + (n · e3)(n × e3) (2.7)

where prime denotes differentiation with respect to x.
This partial differential equation has time periodic, exponentially localized solutions

known as magnetic solitons [11]. At this point it is perhaps worth pointing out that there is
an unfortunate difference in nomenclature, in that in the discrete case time periodic localized
solutions are known as breathers, whereas in the continuum model they are termed solitons.
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We shall continue to use the term soliton when referring to the continuum limit, but the reader
should be aware that it has exactly the same time dependence as the discrete breather and
moreover, as we shall see later, the soliton can be obtained from the discrete breather in the
continuum limit.

Using the same form for the time dependence as in the discrete case (2.4), i.e.

n(x, t) = (sin θ(x) cosωt,− sin θ(x) sin ωt, cos θ(x)) (2.8)

equation (2.7) yields the second-order ordinary differential equation

θ ′′ = (cos θ − ω) sin θ (2.9)

which, of course, is also obtained from the continuum limit of (2.5). The boundary conditions
for a soliton solution, located at the origin, are θ ′(0) = θ(∞) = 0. Equation (2.9) can be
integrated explicitly and the solution satisfying the correct boundary conditions is given by

θ(x) = cos−1

{
2ω

1 − (1 − ω) tanh2(x√
1 − ω

) − 1

}
. (2.10)

Since we require the soliton to be a smooth exponentially localized solution, this formula shows
that the frequency must be restricted to the range ω ∈ (0, 1). There is a second type of soliton
solution [11] for which ω < 0, but this has a different structure from (2.10); in particular
n = −e3 at the centre of the soliton for all ω. This negative-frequency soliton will not arise in
our discussion, so in this paper when we refer to a soliton we shall mean the solution (2.10).

3. Analytic results on discrete breathers

Following the ‘homoclinic orbit’ approach of Flach [7], one would like to prove directly
the existence of solutions of (2.5) with the correct boundary behaviour, using techniques of
dynamical systems theory. Unfortunately, equation (2.5) does not determine a well defined
homeomorphism of the torus, (θi−1, θi) �→ (θi, θi+1), so the direct approach is not convenient
here.

However, we may still prove the existence of breathers in this system by continuation of
one-site breathers from the decoupled limit (α = 0), in the manner of Aubry and MacKay’s
work on oscillator networks [13]. Here we have an algebraic system rather than an infinite
system of ODEs so the details are considerably less technical (compare, for example, with [9]),
and will be treated with corresponding brevity. The idea is that when α = 0, ω ∈ (−1, 1), (2.5)
supports the almost trivial solution

θb
i =

{
0 i = 0
cos−1 ω i = 0

(3.1)

in which every spin remains pointing up except one (whose location we have chosen to be
i = 0), which precesses with frequency ω around a circle of fixed latitude. Note that there is
no reason to assume that ω > 0 as we had to in the continuum system. Keeping ω fixed, the
existence of breathers for all α sufficiently small will follow from an implicit function theorem
argument.

To be precise, let F : �2 ⊕ R → �2 such that

[F(θ, α)]i = (cos θi − ω) sin θi − α[cos θi(sin θi+1 + sin θi−1)

− sin θi(cos θi+1 + cos θi−1)] (3.2)

where �2 is the Banach space of sequences θ : Z → R with finite norm

‖θ‖�2 =
[∑

i

θ2
i

] 1
2

. (3.3)
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Note that θ ∈ �2 is a solution of (2.5) at coupling α if and only if F(θ, α) = 0. Note also
that every θ ∈ �2 converges to 0 as i → ±∞, so such a zero of F(·, α) is a discrete breather.
For all ω ∈ (−1, 1), F(θb, 0) = 0, where θb is the one-site breather defined in (3.1), and the
partial differential of F with respect to the �2 factor at (θ, α) = (θb, 0) is easily seen to be an
isomorphism DF(θb,0) : �2 → �2, that is, a bijection with bounded inverse. In fact this linear
map is diagonal:

[DF(θb,0) δθ ]i =
{
(1 − ω)δθi i = 0
−(1 − ω2)δθ0 i = 0.

(3.4)

Hence we may apply the implicit function theorem [4] to obtain the following

Theorem 1. For all ω ∈ (−1, 1) there exist ε > 0 and a C1 map [0, ε) → �2, denoted
α �→ θα , such that θα is a frequency ω, coupling α solution of (2.5) and θ0 = θb. The map
α �→ θα is unique provided ε is chosen sufficiently small.

As noted above, since the continuation occurs in �2, it has weak spatial localization built in.
This can be improved to exponential spatial localization (that is, there exist C, λ > 1 such
that |θi | < Cλ−|i|) by applying some standard results of Baesens and MacKay. The idea is to
differentiate the continuation equation F(θα, α) = 0 with respect to α to obtain an ODE on
�2, namely,

dθα

dα
= [DF(θα,α)]

−1�(θα) (3.5)

where � : �2 → �2 such that

[�(θ)]i = cos θi(sin θi+1 + sin θi−1) − sin θi(cos θi+1 + cos θi−1). (3.6)

The theorem above may be interpreted as asserting the local existence and uniqueness of a
solution to the initial-value problem θ0 = θb for (3.5). Now �(θα) is clearly exponentially
localized provided θα is, as is [DF(θα,α)]−1�(θα) by theorem 3 of [3]. Thus one obtains
an exponential decay estimate for dθα/dα at α0 given a decay estimate for θα0 . This may be
integrated to show that the estimate for θα0 , if chosen correctly, remains valid in a finite interval
containing α0 (see the proof of theorem 2 of [3], for example). It remains then to note that
the initial datum θb trivially satisfies all exponential decay criteria (i.e. one can choose any
λ > 1), so exponential localization persists for α sufficiently small.

We may deduce the optimal exponent λ for given ω and α by linearizing equation (2.5)
about θ = 0:

δθi+1 −
[

2 +
1 − ω

α

]
δθi + δθi−1 = 0. (3.7)

The general solution to (3.7) is δθi = Aλi + Bλ−i where

λ = 1 +
1 − ω

2α
+

[
1 − ω

α
+

(
1 − ω

2α

)2] 1
2

. (3.8)

It is this type of exponential decay, |θi | ∼ λ−|i|, which we shall encounter in our numerical
analysis.

Another interesting piece of information can be deduced from equation (3.5), namely the
tangent vector to the continuation curve in �2, that is, the direction of continuation away from
α = 0. Substituting (3.1) and (3.4) into (3.5) at α = 0 yields

[
dθα

dα

∣∣∣∣
α=0

]
i

=


0 |i| > 1

1 + ω√
1 − ω2

|i| = 1

2√
1 − ω2

i = 0.

(3.9)
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So the continuation initially proceeds by pulling the central spin, n0, further away from the
vacuum e3, and pulling its nearest neighbours, n±1 away from e3 in the same direction (as n0

and each other), while leaving all other spins fixed at e3, to first order.
We have proved the existence of a continuation of the one-site breather θb, but the same

argument can be applied to any zero of F(·, 0) : �2 → �2 to prove the existence of more
general discrete breathers at small α. Clearly, if F(θ, 0) = 0 then θi ∈ πZ ∪ cos−1{ω} for all
i, and given that θ ∈ �2, θi = 0 for all |i| sufficiently large. So one can construct frequency ω

solutions at α = 0 like

θ̃ = (. . . , 0, 0, cos−1 ω, π, π, π, cos−1 ω, 0, 0, . . .) (3.10)

for example. It is easy to check that DF(θ̃,0) is an isomorphism, so an analogous result to the
theorem above applies here also. Of particular relevance to the numerical work in section 4
will be those periodic solutions obtained by continuing α = 0 solutions with even reflection
symmetry about i = 0, that is, θ−i ≡ θi . Such a solution may be specified by a finite coding
sequence [14] representing the values of θi for i = 0, 1, 2, . . . by + if θi = 0, o if θi = cos−1 ω

and − if θi = π , with the convention that the last symbol represents the constant tail of the
sequence. Of course, since θ ∈ �2, each coding sequence must end in +, so the last symbol
is redundant. Nevertheless, we include it in order to make the notation more suggestive. The
symbols themselves are meant to represent the directions of the central spins: up is +, down
−, while o is somewhere (ω dependent) in between. We shall refer to those breathers obtained
by continuing such a solution by the same coding sequence. Hence θα , the continuation of θb

is a (o+)-breather, while θ̃ and its continuation are (− − o+)-breathers, for example.

4. Numerical results on discrete breathers

In this section we present the results of an extensive numerical investigation of the continuation
of one-site and various multi-site breathers from the anti-continuum limit. To construct
numerical solutions we must first truncate to a finite number of lattice sites, which we implement
by fixing vacuum boundary conditions, θi = 0 for i = ±N , and restricting to the interior of
the lattice |i| < N . Furthermore, the solutions we consider are symmetric about the central
lattice site, that is, θi = θ−i , so only the sites i � 0 need be considered, with an appropriate
modification at the central site i = 0. Explicitly, the task of finding a numerical solution
reduces to finding a zero of the following (N + 1)-component vector:

Fi =



α[cos θi(sin θi+1 + sin θi−1) − sin θi(cos θi+1 + cos θi−1)] + sin θi(ω − cos θi)

0 < i < N

2α[cos θ0 sin θ1 − sin θ0 cos θ1] + sin θ0(ω − cos θ0)

i = 0

θN

i = N

(4.1)

as a function of the (N + 1) values θi , i = 0, . . . , N .
To find a zero of the vector Fi , for a given value of α, we begin with the value α = 0,

where we have the explicit solution corresponding to the trivial one-site breather (3.1) (and
later we use other multi-site breathers). We then increase α by a small amount and use a
Newton–Raphson scheme to converge to the new solution. This process is repeated until the
desired value of α has been obtained. During the calculation the determinant of the Jacobian
matrix Jij = ∂Fi/∂θj is monitored to ensure that it is non-zero, as a check that the scheme
is not accidentally jumping to a different solution branch. The results presented below were
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’site0’
’site1’

Figure 1. Plots of cos θ0 and cos θ1 for the continuation of the (o+)-breather with ω = 0.2, from
α = 0 to 0.5.

obtained from the value N = 20, though different size lattices were checked to confirm that,
providing N is sufficiently large, the results are not sensitive to the number of sites.

In figure 1 we display the results of the continuation of the (o+)-breather, with frequency
ω = 0.2, fromα = 0 to 0.5. Presented are plots of cos θ0 and cos θ1, that is, the third component
of the spin for the central and next to central sites. From this plot it is clear that the (o+)-
breather continues until it joins the static (−+) solution. This is true for all frequencies in the
band ω ∈ (−1, 0.424], where we have computed the edge of the band to within the numerical
accuracy given. It is not surprising that for ω close to −1 the (o+)-breather continues to the
static (−+) solution since for α = 0 the (o+)-breather tends to the (−+) solution as ω → −1.

In figure 2 we present the results of a similar calculation, but this time the initial (o+)-
breather has a frequency ω = 0.5. The values of cos θ0 and cos θ1 are shown as solid curves
and the dashed curves represent the same quantities for the continuum soliton solution (2.10)
sampled at lattice sites x = 0 and h, where h = 1/

√
α. As the coupling α is increased, the

values at these sites tend towards those of the continuum soliton solution, demonstrating that
the (o+)-breather approaches the soliton solution in the continuum limit. As further evidence,
in figure 3 we plot cos θi for all lattice sites, for the value α = 2, superimposed with the soliton
solution given in (2.10), with x = i/

√
2. As a final check, starting with initial conditions

obtained from sampling the soliton solution at the lattice sites and continuing backwards to
α = 0, we find that we recover the (o+)-breather. We have also verified that the decay rate
of the (o+)-breather shown in figure 3 fits extremely well to the derived exponential decay
constant given in (3.8).

Similar results apply for all frequencies in the band ω ∈ (0.424, 1), with the (o+)-breather
continuing to the soliton solution, although the region in which ω is close to unity is numer-
ically inaccessible within the present scheme since the soliton has a relatively slow spatial
decay in this region.

Just below the interface of the two bands, that is for 0 � 0.424 − ω � 1, there is a more
complicated bifurcation structure between the (o+)-breather and the static (−+) solution than
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Figure 2. Plots of cos θ0 and cos θ1 for the continuation of the (o+)-breather (solid curves) with
ω = 0.5, from α = 0 to 2. The dashed curves are the corresponding quantities for the soliton
solution.
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n3
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continued o+ breather
soliton

Figure 3. cos θi for all the lattice sites of the ω = 0.5 (o+)-breather with α = 2 (diamonds). The
dashed curve is the corresponding soliton solution.

in the bulk of the lower band (−1, 0.424]. To examine this region requires a slightly more
sophisticated numerical approach, as we now describe, by illustrating the case ω = 0.42.

For ω = 0.42 the continuation of the (o+)-breather is presented in figure 4, where the
dashed curve represents the value of cos θ0. The continuation fails at α = α∗ = 0.4085,
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Figure 4. cos θ0 for the continuation of the (o+)-breather (dashed curve), the static (−+)-solution
(solid line), and the perturbed (−+)-solution (dotted curve).

o+ -o+ --o+

soliton

soliton

soliton

-+

-+

--+

--+

---+

ω

−1

0

1

ω = 0.424

ω = 0.133
ω = 0.045

Figure 5. A table displaying the results, as ω is varied, of continuing breathers of type (o+), (−o+)
and (− − o+). The symbol at the foot of each column indicates which breather is being continued
and the symbol inside the column represents the end result of the continuation at that frequency.

where the determinant of the Jacobian matrix J is zero. We expect that this solution still
bifurcates from the static (−+) solution, but that it first turns around in α space. To confirm
this expectation we need to find the value α = α̂, at which the bifurcation of the (−+) solution
takes place, and compute the tangent vector in the direction of this bifurcation. The Jacobian
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α α α α

soliton
soliton

soliton
soliton

-+ -+ -+ -+

o+ o+ o+ o+

-o+ -o+ -o+ -o+

ω = 0.600 ω = 0.425 ω = 0.200ω = 0.420

Figure 6. A schematic diagram to indicate how the bifurcation pattern between the (−+) solution
and the (o+) and (−o+) breathers varies with ω.

of the (−+) solution is the tridiagonal matrix

J =


2α − ω − 1 −2α

−α ω − 1 α

α −2α + ω − 1 α

. . . . . . . . .

α −2α + ω − 1 α

0 1

 . (4.2)

Computing the determinant of this matrix (forN = 20) and settingω = 0.42, we find that det J
has only one real and positive root, which occurs at α = α̂ = 0.3858. Note that this calculation
provides the first check on our bifurcation assumption since we require that α̂ < α∗, which is
indeed true. Substituting α = α̂ into J we then compute the eigenvector, δθ , corresponding
to the zero eigenvalue, normalized so that its norm |δθ |2 = ε � 1. Finally, we take the (−+)
solution, in which θ0 = π and θi = 0 for i > 0, and add the perturbation δθ , to create an
initial condition which we then iterate to converge to a solution for a value of α obtained by
incrementing α̂ by a small amount. Following this solution for increasing α we find that it
continues until α = α∗, where it meets the end point of the continued (o+)-breather. This
is illustrated in figure 4, where we plot cos θ0 (dotted curve) for the solution branch obtained
by perturbation of the static (−+) solution, as just described. Following the end point of this
solution branch backwards in α confirms that it joins the static (−+) solution at α = α̂.

To summarize, the results of the continuation of the (o+)-breather, as ω is varied, are
represented in the first column of figure 5, and presented schematically in the upper half of
figure 6. For ω ∈ (0.424, 1) the (o+)-breather continues to the soliton, for ω outside this range,
but close to 0.424, it turns back and joins the static (−+) solution, and in the bulk of the band
(−1, 0.424] it joins the static (−+) solution without turning back.

For ω above 0.424 there is no longer a bifurcation of the static (−+) solution with the (o+)-
breather, but to fill in the full bifurcation pattern of the (−+) solution we must now consider the
continuation of the (−o+)-breather. Note that now the start point of the continuation, α = 0, is
already a multi-site breather, since we have applied reflection symmetric conditions, θi = θ−i ,
and the breathing site is not located at i = 0.

In figure 7 we plot cos θi for the first three sites, i = 0, 1, 2, for the continuation of the
(−o+)-breather with frequency ω = −0.2. Clearly, for this frequency, the (−o+)-breather
continues to the static (−−+) solution, and this is true for all ω ∈ (−1, 0.133). From a similar
earlier discussion, it follows that this result is to be expected, at least for ω near −1. For
ω ∈ [0.133, 0.424] the (−o+)-breather approaches the soliton solution in the continuum limit.



Discrete breathers in anisotropic ferromagnetic spin chains 10849

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n3

alpha

site0
site1
site2

Figure 7. cos θ0, cos θ1, cos θ2 for the continuation of the ω = −0.2 (−o+)-breather for
α ∈ [0, 0.8].

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n3

alpha

site0

site1

site2

Figure 8. cos θ0, cos θ1, cos θ2 (solid curves) for the continuation of the ω = 0.2 (−o+)-breather
for α ∈ [0, 2]. The dashed curves are the corresponding quantities for the soliton solution.

As an example, for ω = 0.2, we present in figure 8 a plot of cos θi for the first three sites (solid
curves) and also the corresponding quantities for the sampled soliton solution (dashed curves).
For ω ∈ (0.424, 1) the (−o+)-breather continues to the static (−+) solution, as demonstrated
in figure 9 for ω = 0.55. These results are summarized in the second column of figure 5.
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Figure 9. cos θ0, cos θ1 for the continuation of the ω = 0.55 (−o+)-breather for α ∈ [0, 0.5].

It is, of course, no accident that the frequency (ω = 0.424) at which the (o+)-breather fails
to continue to the soliton is precisely that at which the (−o+)-breather begins to continue to
the soliton. This can be understood by completing the bifurcation pattern of the (−+) solution,
using the above results on the continuation of the (−o+)-breather, to fill in the bottom half of
the schematic diagram in figure 6. As presented in the diagram, there is always a bifurcation
of the (−+) solution, but it switches over from the (−o+)-breather to the (o+)-breather as
the frequency is decreased to the critical value ω = 0.424. At this point the (o+)-breather
no longer continues to the soliton, but the (−o+)-breather now does. We have verified this
structure with a number of detailed further calculations; for example, we have confirmed the
turning back of the continuation of the (−o+)-breather by perturbing the (−+) solution as
described earlier.

The lower edge of the band ω ∈ [0.133, 0.424] can also be understood in a similar fashion
by an analysis of the bifurcation pattern of the (− − +) solution, which requires computations
of the continuation of the (− − o+)-breather. These calculations have been performed and the
results are summarized in the third column of figure 5. Again there is a soliton band, which
begins at the frequency ω = 0.045, and ends at the start of the (−o+)-breather soliton band
where ω = 0.133. Below the soliton band the (− − o+)-breather continues to the (− − −+)
solution and above the soliton band it continues to the (−−+) solution. Computations confirm
that the bifurcation pattern of the (− − +) solution is analogous to that of the (−+) solution
depicted in figure 6, with an extra − sign inserted into the coding sequence of each solution
together with a shift in the frequencies.

Given the above results we are naturally led to the conjecture that the pattern of soliton
bands continues, with each band covering a smaller range of frequencies, but such that for
any frequency ω ∈ (0, 1) there is a discrete breather solution whose continuation from α = 0
tends to the soliton solution in the continuum limit α → ∞.

Generally, as mentioned in the introduction, discrete breathers in networks of coupled
oscillators fail to continue beyond a certain coupling due to resonance with phonons.
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In the system considered here, the role of phonons is played by spin waves,

δni (t) =
( cos(ki − ωpt)

sin(ki − ωpt)

0

)
(4.3)

which are travelling wave solutions of (2.3) linearized about the vacuum n = e3. These have
dispersion relation

ωp = 1 + 4α sin2(k/2) (4.4)

so the spin waves form a frequency band with ωp ∈ [1, 1 + 4α]. Note that the maximal
frequency spin wave (k = π ) is standing, hence of the form (2.4) with frequency ωp = 1 + 4α.
It may equally well be regarded as periodic of frequencyωp/n for any n ∈ Z

+. Mathematically,
a bifurcation in the continuation of breathers may only occur where DF acquires nontrivial
kernel, that is the equation of ‘motion’ (2.5) linearized about the breather supports a nonzero
solution. Of course phonons, being linearized solutions about the vacuum, never lie in ker DF

strictly speaking. Nevertheless, since the breather approaches the vacuum exponentially fast
as |i| → ∞, it is generally accepted that the existence of a standing phonon of frequency
ωp = nω generically implies nontriviality of ker DF , that is, the phonon is close to a tangent
vector in ker DF , approaching it asymptotically as |i| → ∞. In the present case, the standing
spin wave lies outside �2, so cannot be close to ker DF , and hence cannot cause a bifurcation.
In practice this technical point is irrelevant: the numerics are performed on a finite chain
where such distinctions are impossible to make. Why then do the standing spin waves cause
no bifurcations in the numerical continuation? The reason is that our map F contains explicit
parametric dependence on ω, so only the standing spin wave of frequency ωp = ω is in the
kernel of DF at the vacuum. Higher harmonics, ωp = nω are not linearized solutions of our
ansatz-derived equation (2.5), and so cannot cause bifurcations. This is entirely consistent
with physical intuition. These breathers, like those in the DNLS system, are monochromatic:
their time dependence contains no higher harmonics so one does not expect them to resonate
with the spin waves. It is precisely the imposition of a monochromatic ansatz (2.4) which
introduced the parametric ω dependence discussed above.

5. Linear stability

Linear stability of breathers in networks of anharmonic oscillators was studied by Aubry in [1].
Despite the many superficial differences between spin chains and oscillator networks, we
shall find that the analytic framework developed by Aubry readily adapts to this new setting,
yielding similar results. In particular, we shall prove that (o+)-breathers of all frequencies
ω ∈ (−1, 0) ∪ (0, 1) must be linearly stable for sufficiently small α provided ω−1 /∈ Z. Just
how small α must be, and the stability properties of the various other breather types will be
investigated numerically.

As in [1], it is technically convenient to truncate the lattice to (large but) finite size N (the
results will be independent of N ). Existence of discrete breathers in such a system follows
from an identical argument to that of theorem 1, but with �2 replaced by R

N with its usual
norm. Equation (2.3) along with fixed endpoints n0 = nN+1 = 0 then define a flow on phase
space M = (S2)N . Crucial to the analysis is the fact that this flow is Hamiltonian with respect
to the natural symplectic structure on M , namely

& =
∑
i

&i (5.1)

where &i is the area form on the ith 2-sphere. The Hamiltonian H : M → R is the truncation
of (2.1), again with fixed endpoints. It follows that the flow is symplectomorphic.
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A period T solution of the system is a fixed point of the return map PT : M → M ,
PT : n(0) �→ n(T ). Such a solution is said to be linearly stable if the spectrum of its
associated Floquet map F� = (dPT )n(0) : Tn(0)M → Tn(T )=n(0)M lies within the closed unit
disc D = {z ∈ C : |z| � 1}. Recall that F� : δn(0) �→ δn(T ) where δn(t) is the solution of
the linearization of (2.3) about the solution n(t), explicitly,

δṅi = α[ni × (δni+1 + δni−1) + δni × (ni+1 + ni−1)] + (δni · e3)ni × e3. (5.2)

Since PT is a symplectomorphism, F� is a symplectic map, that is

&(F� δn,F� δn′) ≡ &(δn, δn′). (5.3)

It follows that if λ ∈ spec F�, so are λ̄, 1/λ and 1/λ̄. Hence the solution is linearly stable if
and only if spec F� lies on the unit circle ∂D = {z ∈ C : |z| = 1}.

It is straightforward to construct F� explicitly for all the breathers considered in sections 3
and 4 in the uncoupled limit, α = 0. For each ni (0) = (sin θi, 0, cos θi) define the ordered
orthonormal basis

(εi = (cos θi, 0, sin θi), e2) (5.4)

for Tni (0)S
2, so that Tn(0)M = ⊕

i span 〈εi , e2〉. Relative to this basis, the symplectic form
has the usual block matrix expression, namely

& = diag

(
. . . , R

(
π

2

)
, R

(
π

2

)
, . . .

)
(5.5)

where R(ψ) is the SO(2) matrix which performs a clockwise rotation through angle ψ ,
explicitly,

R(ψ) =
(

cosψ sin ψ

− sin ψ cosψ

)
. (5.6)

The Floquet matrix of the frequency ω (o+)-breather is

F� = diag (. . . , R(T ), R(T ), S, R(T ), R(T ), . . .) (5.7)

where T = 2π/ω and S is the matrix

S =
(

1 0
(1 − ω2)T 1

)
. (5.8)

Similarly, the (−o+)-breather has Floquet matrix

F� = diag (. . . , R(T ), R(T ), S, R(T ), S, R(T ), R(T ), . . .) (5.9)

and so on. Clearly all these matrices have spec F� = {e±iT , 1} ⊂ ∂D so the uncoupled
breathers of all types are linearly stable.

As α increases from 0, theorem 1 guarantees the existence of a continuous family of
symplectic maps F�α (recall that α �→ θα is C1) whose eigenvalues depend continuously on
α. Do these eigenvalues remain on ∂D? Clearly only coincident pairs may leave ∂D in tandem,
by the symmetry properties of spec F�. Krein theory [1] states that an eigenvalue λ ∈ ∂D may
bifurcate off the unit circle only if its associated Krein signature is indefinite. This signature is
defined as follows. LetEλ ⊂ C

2N be the λ eigenspace of F� andVλ := Re (Eλ⊕E1/λ) ⊂ R
2N .

Then on Vλ one defines a bilinear form Qλ : Vλ ⊕ Vλ → R such that

Qλ(ξ, η) := &(ξ,F� η). (5.10)

The Krein signature of λ is the signature of this bilinear form. Hence, λ may bifurcate off ∂D
only if Qλ is indefinite, that is, the diagonal map ξ �→ Qλ(ξ, ξ) is neither positive definite nor
negative definite on Vλ\{0}.
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Applying this theory to (5.7) one sees that VeiT ≡ Ve−iT
∼= R

2N−2, V1
∼= R

2,

QeiT (ξ, ξ) = −(sin T ) ξT ξ Q1(ξ, ξ) = (1 − ω2)ξ 2
1 . (5.11)

Provided sin T = 0, i.e. ω−1 /∈ Z, QeiT is definite and hence all the eigenvalues e±iT must
remain on ∂D, at least for sufficiently small α. On the other hand, Q1 is only positive semi-
definite, so no such constraint applies to the double eigenvalue λ = 1. Note however that for
any nonstatic periodT solutionn(t)of an autonomous dynamical system, ṅ(0) is an eigenvector
of F� with F� ṅ(0) = ṅ(0) by time translation invariance. It follows that one copy of the
eigenvalue λ = 1 is fixed for all α. The second is also fixed for sufficiently small α since to
move it would have to (at least) double up due to the symmetry properties of spec F�. Hence,
we have proved:

Theorem 2. For each N ∈ Z
+ and for all ω ∈ (−1, 1)\{0} such that ω−1 /∈ Z, there exists

α̃(ω) > 0 such that for all α ∈ [0, α̃(ω)) the continued (o+)-breathers, whose existence on
the N site lattice is guaranteed by theorem 1, are linearly stable.

Unfortunately, this argument cannot be applied to multisite breathers such as (−o+). This
is because V1 is now (at least) four dimensional and Q1 remains only semidefinite. Time
translation symmetry is not sufficient to fix all four copies of λ = 1 under perturbation of α,
so while the α = 0 (−o+)-, (− − o+)- etc breathers are all stable, instability may develop for
arbitrarily small α. Note, however, that the Krein criterion is necessary but not sufficient: it
does not guarantee instability ofα > 0 multisite breathers, nor of (o+)-breathers withω−1 ∈ Z.
To investigate these issues, we must resort once again to numerical analysis.

One may vastly simplify the task of numerically constructing the Floquet matrix F� for
this problem by transforming to a co-rotating coordinate system. Let R : R → SO(3) such
that

R(t) = diag (R(ωt), 1) (5.12)

where R(t) is the the SO(2) matrix defined in equation (5.6), and define new variables ui (t)

such that

ni (t) = R(t)ui (t). (5.13)

Then the equations of motion become

u̇i = αui × (ui+1 + ui−1) + (ui · e3)(ui × e3) − Aui (5.14)

where A = (R−1Ṙ)(t) ≡ (R−1Ṙ)(0) ∈ so(3) is a constant antisymmetric matrix. The
point is that all the breather solutions we have been considering are static in this coordinate
system, namely ui (t) = (sin θi, 0, cos θi), where θi satisfies (2.5) as before. Consequently,
the linearized flow is defined by an autonomous linear system of ODEs,

δu̇i = α[ui × (δui+1 + δui−1) + δui × (ui+1 + ui−1)] + (δui · e3)ui × e3 − Aδui . (5.15)

Using the basis {εi , e2} for Tui
S2 and writing

δui = ai(t)εi + bi(t)e2 (5.16)

this system reduces to(
ȧ

ḃ

)
= 4

(
a

b

)
=
(

0 4+

4− 0

)(
a

b

)
(5.17)

where 4± are constant, tridiagonal, symmetric real N × N matrices with components

4+
ij (θ) = α{−δi,j+1 − δi,j−1 + [cos(θi − θi+1) + cos(θi − θi−1)]δi,j }

+ cos θi(cos θi − ω)δi,j

4−
ij (θ) = α{cos(θi − θj )(δi,j+1 + δi,j−1) − [cos(θi − θi+1) + cos(θi − θi−1)]δi,j } (5.18)

+(ω cos θi − cos 2θi)δi,j .
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The Floquet matrix F� : δn(0) �→ δn(T ) is simply

F� = R(T ) exp(T 4)R(0)−1 ≡ exp(T 4). (5.19)

One may easily check that equations (5.18), (5.19) reproduce the α = 0 matrices previously
obtained. Note that we have not imposed a monochromatic ansatz for the perturbation: δui

and hence δni are permitted to have arbitrary time dependence. We have merely made a
particularly convenient choice of coordinates.

So a period T breather is linearly stable if and only if its corresponding 4 matrix has
spec4 ⊂ iR ⊂ C, a criterion which is trivial to test numerically. This should be contrasted with
the procedure usually employed in numerical linear stability analyses, where construction of F�

requires a coupled system of 2N(N+1) linear and nonlinear ODEs to be solved numerically. Of
course, the transformation to co-rotating coordinates, and the consequent simplification of the
Floquet problem, are only possible because we are considering anisotropic spin chains which
retain a SO(2) isotropy group. The technique will not work in chains with fully anisotropic
exchange interaction, as are considered in [9].

The numerical results described below were obtained by computing spec4 using various
standard routines taken from [15] on a 41-site lattice (the results do not differ significantly
from those obtained with an 81-site lattice). It should be noted that, while the algorithm to
construct the breather initial profile θ employed spatial reflexion symmetry, no such symmetry
is imposed on the spectral problem for 4. Hence all possible modes of instability are included
in the analysis. Given the spectrum {λi} of 4, one constructs

µ := max
i

(Re λi)
2. (5.20)

The corresponding breather is stable if and only if µ = 0.
Figure 10 presents a graph of the maximal α̃(ω) of theorem 2, that is, the coupling at which

instability of the frequency ω (o+)-breather first occurs. Three features should be noted. The
first is that, contrary to expectation, weakly coupled breathers remain stable even at resonant
frequencies, ω−1 ∈ Z. In fact, there seems to be nothing special about these frequencies
at all from the standpoint either of breather existence (see sections 3 and 4) or of stability.
Second, α̃(ω) appears to be finite for all ω: even when ω > 0.424 so that the (o+)-breather
continues all the way to the continuum soliton (a linearly stable solution of the continuum
system), it loses stability along the way. Third α̃(ω) varies very little with ω except for ω

close to unity. It appears to grow unbounded as ω → 1, which seems reasonable since the
ω = 1 (o+)-‘breather’ is nothing but the trivial vacuum ni = e3, which is stable for all α. This
limit is numerically inaccessible, however (the breathers tend to spread out over the whole
lattice as ω grows so that finite-size effects dominate), so one should treat this observation
with caution.

Figure 11 shows plots of µ against coupling α for (o+)-breathers of various frequencies.
For ω � 0.424, the breather remains stable until after it has joined the (−+) branch, only
losing stability when this trivial static solution does. After this, µ grows monotonically with
α. For ω > 0.424 the breather first loses and then regains stability: a hump of compact
support appears in the graph of µ. This hump is followed by another of roughly the same
width but much less tall (note the change in vertical scale), so that stability is once again lost
and regained. This leads us to conjecture that instability occurs in regularly repeating bands,
the degree of instability (the height of the humps) decaying exponentially as α increases and
the breather approaches the continuum soliton. It is interesting to note that the transition
from stability to instability (or vice versa) generically coincides with a sign change in the
determinant of DF̂ , where F̂ is the unsymmetrized finite lattice version of the continuation
function F defined in (3.2). However no such sign change occurs in the Jacobian of the
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Figure 10. The coupling of first instability α̃ as a function of frequency, ω for (o+)-breathers.

symmetrized continuation function (4.1), as employed in our continuation scheme, so the
corresponding eigenvector δθ ∈ ker DF̂ must have odd spatial parity. It seems likely, therefore,
that stability transitions generically accompany symmetry breaking bifurcations in the full (i.e.
unsymmetrized) continuation problem.

Figure 12 shows similar plots for (−o+)-breathers. Recall that no result equivalent to
theorem 2 holds in this context, so there is no reason to expect stability even for arbitrarily small
α. Indeed, we found that for all ω, µ departs from 0 as soon as α does. For ω /∈ (0.133, 0.424)
the breather remains unstable until it joins the appropriate trivial branch ((−−+) forω < 0.133,
(−+) for ω > 0.424), whereupon it becomes briefly stable before instability irrevocably sets
in. For ω ∈ (0.133, 0.424), the breathers gain stability, then lose it, rather in the fashion of the
(o+)-breathers described above. Again, a pattern of repeating bands of diminishing instability
seems to occur as α grows large and the breather approaches the continuum soliton. Plots
of µ(α) for (− − o+) breathers with ω ∈ (0.045, 0.133) are very similar: the breathers start
as unstable, then gain and lose stability in a repetitive pattern. This leads us to conjecture
that wherever breathers tend to the continuum soliton as α → ∞, a similar banded stability
pattern occurs.

6. Conclusion

In this paper we have proved the existence of discrete breathers in ferromagnetic spin chains
with easy-axis anisotropy, and constructed such breathers by means of numerical analysis.
The main novelty of our numerical results is that discrete breathers exist independent of the
inter-spin coupling α, right up to the continuum limit α → ∞. This should be contrasted with
previous studies of spin chains with easy-plane anisotropy [17], where the breathers are again
‘monochromatic’, but the spin waves have a different dispersion relation, and apparently do
cause trouble at large α.
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Figure 11. The instability function µ(α), as defined in equation (5.20) for various (o+)-breathers
(solid, ω = 0.5; dashed, ω = 0.1). The breather is stable if and only if µ = 0. Note that both are
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The method of proof itself was something of a hybrid: an ansatz was made to reduce the
equation for breathers from a system of ODEs to a purely algebraic system, but then existence
of solutions of the latter was proved by continuing a decoupled solution in the sequence space
�2. Consequently, the result shares nice properties of both the Flach and MacKay–Aubry
approaches. Since the reduced system depends parametrically on ω, spin wave resonances
cause no problems, theoretical or numerical (cf [13]). On the other hand, the result generalizes
immediately to multi-dimensional spin lattices, as MacKay–Aubry style theorems usually do.
Whether our numerical results generalize similarly, that is, whether a picture similar to figure 5
emerges for two- and three-dimensional lattices is an interesting open question. It should
be noted that the continuum theory in higher dimensions does support radially symmetric,
exponentially localized soliton solutions of the form analogous to (2.8), namely

n(x, t) = (sin θ(|x|) cosωt,− sin θ(|x|) sin ωt, cos θ(|x|)) (6.1)

although explicit expressions for θ(r) are not known [11].
The ansatz may be interpreted as transforming to co-rotating coordinates, wherein the

breather solutions are static. This viewpoint greatly simplifies the linear stability analysis
since one need only solve an autonomous linear system of ODEs. In this way we have made an
extensive study of the linear stability properties of the breathers. The results suggest that those
breather families which converge as α → ∞ to the continuum soliton experience repeating
bands of instability of diminishing strength as α increases. We found that the spin waves
have no influence whatsoever on stability issues, even though the stability analysis includes all
possible perturbations, including those outside the monochromatic ansatz. Flach et al [9] also
perform a numerical linear stability analysis for breathers in their spin chains, and obtain results
broadly similar to ours, namely one-site breathers are found to be stable at weak coupling, and
certain multisite breathers are found to be unstable at weak coupling. The subsequent loss and
regaining of (in)stability for increasing coupling is not reported—perhaps it is special to chains
with isotropic exchange interaction. Their survey of the breather existence domains is rather
less extensive than ours, however, presumably due to the much higher computational cost in
their systems, so it is possible that similar band structures to those found here exist there also.

One open question immediately arises: that of breather mobility in this system. In the
continuum limit, there exist travelling solitons which propagate at constant speed [11]. Can one
find analogous propagating breathers at finite coupling? There seems to be little hope of proving
anything rigorously about such objects, but one could still hope to study breather mobility
numerically, focusing on how breather mobility depends on ω and α. For a survey of what is
known about moving discrete breathers, see the review articles [8,12]. One striking observation
by Aubry and Cretegny is that breather mobility may be associated with certain behaviour of
the Floquet matrix [2]. In a one-parameter family of breathers (such as θα), mobility occurs
precisely at a value, α′ say, where a certain type of Krein bifurcation occurs: F� becomes
defective and so-called ‘marginal modes’ appear (they span the orthogonal complement of
the sum of the F�α′ eigenspaces). Perturbing θα′ in the direction of such a marginal mode
produces a slowly translating breather. So breather mobility seems to be naturally associated
with transitions from linear stability to instability. It would be interesting to see whether the
stability transitions observed in section 5 have such significance.
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